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Abstract
This paper deals with non-adiabatic processes (i.e. processes excluded by the
adiabatic theorem) from the geometrical (group-theoretical) point of view. An
approximate formula for the probabilities of the non-adiabatic transitions is
derived in the adiabatic regime for the case when the parameter-dependent
Hamiltonian represents a smooth curve in the Lie algebra and the quantal
dynamics is determined by the corresponding Lie group evolution operator. We
treat the spin precession in a time-dependent magnetic field and the over-barrier
reflection problem in a uniform way using the first-order dynamical equations
on SU(2) and SU(1.1) group manifolds, respectively. A comparison with
analytic solutions for simple solvable models is provided.

PACS numbers: 0365, 0220, 0240

1. Introduction

It is well known that probabilities of transitions induced by a time dependence of the
Hamiltonian are suppressed if the dependence is slow. This statement formulated and proved
by Born and Fock [3] is presented in standard textbooks (e.g. by Messiah [7]) and is known as
the adiabatic theorem. The adiabatic theorem does not prove that the transitions are forbidden,
it means just that the probabilities are suppressed exponentially and vanish to any finite order of
the standard perturbation theory. Transitions of this type should not be discarded, however, if
they result in special phenomena, even though relatively rare ones. The over-barrier reflection
and the spin-flip in a time-dependent magnetic field slowly deviating from the original direction
may serve as simple examples of such phenomena. Usually, the adiabatic character of the
process suggests a way to evaluate its probability, as in the quasi-classical approximation.

1 Professor M S Marinov passed away on 17 January 2000.
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Corrections to the adiabatic theorem were considered in a number of works, especially
with application to physical systems with two non-degenerate energy levels. Dykhne [8]
considered a Hamiltonian Ĥ (t) with two eigenstates �1(t), �2(t) which is analytic in time.
He found the transition probability p12 for a system, prepared at time −∞ in the eigenstate
�1(−∞) to pass to the eigenstate�2 as t runs from −∞ to +∞. This probability is expressed
by the formula

p12 ∼ exp

(
−2T

∣∣∣∣ Im
∫ tc

0
(E2(t)− E1(t)) dt

∣∣∣∣
)
. (1)

Here tc is a point in the complex time plane in which E2(t) and E1(t) cross, and T is a
time-scale parameter (large in the adiabatic limit) over which Ĥ (t) changes essentially. A
rigorous derivation of Dykhne’s result was given by Davis and Pechukas [9]. Suominen
and co-workers [12, 13] have applied the Dykhne, Davis and Pechukas approach to two-level
solvable models. In particular, an adiabatic behaviour of the Landau and Zener [14, 15] model
was considered. It appears that for this model the Dykhne, Davis and Pechukas method gives
the exact answer.

From the works of Berry [2], Joye et al [4], Jakšić and Segert [5, 6] it becomes clear
that similar to the Berry adiabatic phase [1], the transition probabilities induced by a time
dependence of the Hamiltonian are connected with the geometry of the parameter space. In
particular, when the evolution of a system is described by the Hamiltonian of the form

Ĥ (s) = n(s) · σ |n(s)| = 1 (2)

(where n(s) is a parameter-dependent unit vector and σ = (σ1, σ2, σ3) are Pauli matrices) in
the first-order adiabatic perturbation theory the transition (spin-flip) W± is determined by the
Fourier transform [2, 4–6]:

W± ∼
∣∣∣∣
∫ +∞

−∞
exp(−2iT s)χ(s) ds

∣∣∣∣
2

(3)

χ(s) = i/2|n′(s)| exp(−iς(s)) (4)

where |n′(s)| is related to the Riemannian length element dl(s) = |n′(s)| ds of the unit sphere.
The function ς(s) is given by the integral

ς(s) =
∫ s

0
κg(s) ds (5)

and κg(s) is the geodesic curvature of a path n(s):

κg(s) = n′′(s) · (n′(s)× n(s))

|n′(s)|2 . (6)

We note that the Hamiltonian (2) defines a curve in the Lie algebra su(2). The corresponding
evolution operator belongs to the fundamental (2 × 2) representation of the group SU(2) and
the transition probability appears to be completely determined by the geometric properties of
the SU(2) group homogeneous space S2 = SU(2)/U(1) (which serves as the parameter space
for this particular situation).

It is the main purpose of this work to establish a relation between the probabilities of
the non-adiabatic transitions and the geometry of the parameter space in a way which is
more general than the above-mentioned case. Namely, we consider a situation when the
commutator algebra of the Hamiltonian operators Ĥ (s) at different values of the parameter s
is closed for all s, constituting an arbitrary Lie algebra G. This condition makes it possible
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to reformulate the original problem about the evolution of a quantum state in terms of a first-
order dynamic equation on the group manifold (section 2). The adiabatic solution of this
equation is constructed in section 3, and the integral expression for the Lie algebra element,
determining transition probabilities, is derived. In section 4 our approach is applied to the spin
precession in a variable external field. The adiabatic approximation for the spin precession
[2, 4–6] is reconstructed. Applied to the ordinary one-dimensional Schrödinger equation, our
method gives the well known WKBJ solution as the first adiabatic approximation. In the
leading (second-)order approximation our approach leads to Bremmer’s formula [18] for the
over-barrier reflection (section 5). In section 6 an expression for the transition probability due
to a parametric excitation of a quantum oscillator is obtained from our results. Section 7 is
devoted to a comparison of our calculations with exact solutions for a number of analytically
solvable models.

2. Dynamic equation on group manifolds

We consider the linear operator (matrix) equation of the form

∂Ĝ/∂t = B̂(t)Ĝ Ĝ(t0) = Î (7)

where Î is the unit operator and B̂(t) has a given time dependence. This is a pattern for a
number of physical problems, including the one-dimensional Schrödinger equation and the
spin precession in a time-dependent magnetic field. If the commutator algebra of operators
B̂(t) is closed for all t , constituting a Lie algebra G, one actually deals with the first-order
dynamical equations on the Lie group G, generated by G. Now the problem can be written in
terms of the Cartan–Maurer 1-form,

dg g−1 = b(t) dt g(t) ∈ G b ∈ G (8)

with the initial condition g(0) = e, i.e. the unit element of G. Special problems are those
where b(t) belongs to a Cartan subalgebra of G, i.e. b(t) ∈ H ⊂ G,∀t . In a case like that,
equation (8) is integrated immediately,

g(t) = exp

[∫ t

t0

b(τ) dτ

]
∈ H (9)

where H is the corresponding Abelian subgroup of G. In general, equation (8) is a set of
(nonlinear) differential equations which cannot be reduced to quadratures. It is notable that
the desired group element may be shifted by a properly chosen amount g0(t), so the equation
is rewritten in an equivalent form, g = g0(t)g1,

dg1 g
−1
1 = b1(t) dt b1(t) dt = g−1

0

(
b dt − dg0 g

−1
0

)
g0 ∈ G. (10)

Thus the problem may be reduced to a more tractable one.
Let us restrict ourselves to problems where b(t) approaches a Cartan subalgebra H

asymptotically, as t → ±∞, and evaluate the transition probability between eigenstates of
operators representing H. The S-operator given by the following limit may be used (provided
this limit exists):

Ŝ = lim
t,t0→±∞ exp

[
−
∫ t

0
B̂+(τ ) dτ

]
Ĝt0(t) exp

[
−
∫ 0

t0

B̂−(τ ) dτ

]
(11)
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where B̂±(t) ∈ H, and limt,t0→±∞ ‖B̂(t) − B̂±(t)‖ = 0. The probability of a transition
between the states given by the density operators P̂± at t → ±∞ is

W± ≡ lim
t,t0→±∞ Tr

[
P̂+Ĝ(t)P̂−Ĝ†(t)

]
= Tr

(
P̂+ŜP̂−Ŝ†

)
(12)

since we assume that P̂± commute with B̂±.

3. The adiabatic approximation

At any given time t , the driving force b(t) ∈ G may be reduced to a Cartan subalgebra H, and
the group element is decomposed as

b(t) = v(t)β(t)v(t)−1 β(t) ∈ H (13)

g(t) = w(t)h(t)w(t)−1 h(t) ∈ H. (14)

Remarkably, if v has no t dependence, that would fix the subalgebra H for all t , and g would
be obtained immediately, like in equation (9). We consider the problems where b(t) belongs
to the Cartan subalgebra asymptotically, at t → ±∞, so lim v(t) = e. The equation resulting
from (8) would be

w
(
dhh−1 + w−1 dw − hw−1 dw h−1

)
w−1 = vβv−1 dt. (15)

Splitting this equation into the subalgebras H and G\H , we obtain a set of differential equations
for h and w. We find an approximate solution of equation (15) for adiabatic processes, where
the t dependence of v is slow, the derivative dv/dt is small, and the condition

‖v−1 dv/dt‖ � ‖β‖ (16)

is satisfied. Here the norm ‖y‖ for an arbitrary element y of the Lie algebra G is introduced,

‖y‖ =
√

Tr(YY †) y ∈ G (17)

and Y is the matrix belonging to the adjoint representation of the Lie algebra G and
corresponding to the Lie algebra element y. When the condition (16) holds, w is always
close to v, and the deviation of g(∞) from the subgroup H is negligible. This is the meaning
of the adiabatic theorem: the eigenstates of operators belonging to the subalgebra H are not
subject to transitions.

The unknown group element may be replaced by w = v exp(−ω), and it is assumed that
ω ∈ G \H . Small deviations from the adiabatic limit, producing non-adiabatic transitions,
are obtained if we consider the first approximation in ω, which is expected to be of the order
of v−1 dv, discarding all higher-order terms. The result is

dhh−1 − R(h)(v−1 dv − dω) = [β + (ωβ − βω)] dt (18)

where R(h)η ≡ hηh−1 − η,∀η ∈ G (note that R(h)η = 0, if η ∈ H). Separating the zero-
and the first-order terms, we obtain two equations

dh0 h
−1
0 = β(t) dt so h0 = exp

[∫ t

t0

β(τ) dτ

]
∈ H (19)

R(h0)∂ω/∂t + [h−1
0 ∂h0/∂t, ω] = R(h0)(v

−1∂v/∂t). (20)

The latter equation is also integrated immediately,

R(h−1
0 )ω =

∫ t

t0

R(h−1
0 )(v−1v̇) dτ v̇ ≡ ∂v/∂t |t=τ . (21)
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In the asymptotics, as soon as t, t0 → ±∞, we obtain

γ ≡ lim
t,t0→±∞R(h−1

0 )ω =
∫ ∞

−∞
R(h−1

0 )(v−1v̇) dτ (22)

and this element of G determines the transition probability amplitude. In order to see that, let
us insert the asymptotic value of the operator representing the group element

g = v exp(−ω)h exp(ω)v−1 ≈ (e − ω)h0(e + ω) ≈ h0(e − R(h−1
0 )ω) (23)

in equation (12) for the transition probability. Assuming that P̂+ and P̂− represent different
(orthogonal) eigenstates of operators corresponding to H, so that P̂+P̂− = 0 = P̂−P̂+, one
obtains the following expression for the transition probability in the leading (second) order:

W± = Tr(P̂++̂P̂−+̂) (24)

where +̂ is the operator representing γ ∈ G in equation (22). Note that any value may be taken
for t0 in equation (28); changing it, say, to t ′0, would result in a constant gauge substitution of
γ for γ ′,

γ ′ = (h′
0)

−1γ h′
0 h′

0 = exp

[ ∫ t0

t ′0

β(τ) dτ

]
. (25)

That would not change the probability in (24). The convergence of the integral in (22) depends
on how fast the driving force b(t) is approaching its asymptotics in H. It is noteworthy that the
present result extends the standard perturbation theory. If b(t) = β0 +λb1(t), where b1(t) → 0
at ±∞, then to the first order in λ one has to set h0(τ ) = exp(β0τ) in (22), and the result is an
extension of the Born approximation. In general, γ indicates the deviation from the adiabatic
limit. Even if the perturbation is not small absolutely, γ may be small because of two different
reasons:

(a) the change of v is slow, though it may be not close to unity, which is the case for small
perturbations;

(b) the deviation of b(t) from H takes place during a small time interval, and the integral is
small as a result of that.

4. Spin-flip in a variable magnetic field

The spin precession in a time-dependent magnetic field, the fundamental problem for NMR
[10], is determined by the Bloch equation for the spinor wavefunction,

idψ/dt = (B · σ)ψ (26)

where B ≡ µB(t), B(t) is a variable magnetic field vector,µ is the particle magnetic moment,
and σ are the Pauli matrices. The fundamental solution of equation (26) is given by a unitary
2×2 matrix, so the group is SU(2). The matrix Ĝ is given by equation (7) with B̂ = −i(B ·σ).

Let us consider, for instance, the case where a pulse is applied in the x-direction, while
the z-component is constant, B = {B1(t), 0, B0}, and B1(t) → 0 as → ±∞. The adiabatic
approximation holds if B1(t) is a slow function of t . The elements which appear in (13) are

β(t) = 2µ[B2
0 + B2

1 (t)]
1/2J3 v(t) = exp(θJ2) (27)

where tan θ = −B1(t)/B0, and Ja is the basis in G, represented by 1
2 iσa . For this particular

representation, we find from equation (17), that

‖v−1 dv/dt‖ = |dθ/dt | ‖β‖ = µ[B2
0 + B2

1 (t)]
1/2 (28)
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and the general condition of applicability (16) leads to

|dθ/dt | � µ[B2
0 + B2

1 (t)]
1/2. (29)

The spin-flip, as given by equation (22), is determined by γ = A+−J2, and

A+− =
∫ ∞

−∞
e2iα(τ)θ̇ dτ α(τ) = µ

∫ τ

τ1

[B2
0 + B2

1 (t)]
1/2 dt. (30)

The spin probability is W+− = |A+−|2. The accuracy of the approximation has been checked
for a field where the exact analytical solution is available (see section 7).

In the formula (30) dl(τ ) = θ̇ dτ is the Riemannian length element on the path n(τ ) =
(sin θ, 0, cos θ). The geodesic curvature determined by equation (6), is equal to zero. In a
more general case of the magnetic field configuration B = |B|(sin θ cosφ, sin θ sin φ, cos θ)
the group element g0 leading to equation (10) will be chosen as g0 = exp(−2φJ3). This
transformation alters the phaseα(τ) in equation (30) toµ

∫ τ
τ1

[sin2 θ+(cos θ−φ̇/|B|)2]1/2|B| dt .
An expansion of α(τ) to the lowest-order non-vanishing in φ̇/|B| leads to Berry [2], Joye et al
[4], Jakšić and Segert [5, 6] result for the spin-flip probability.

5. Over-barrier reflection

The Schrödinger equation, � ′′ − U(x)� = −k2� is equivalent to the following first-order
problem for the two-component function ψ(x), satisfying the equation

dψ

dx
= B̂(x)ψ

where

ψ =
(
� ′ − ik�

� ′ + ik�

)
B̂(x) ≡ −i

(
k − U/2k U/2k

−U/2k −k + U/2k

)
. (31)

Thus the coordinate x plays the role of the time parameter t . For the plane wave moving in
the positive direction, � = C exp(ikx), so the upper component of ψ vanishes, and reflection
is like the spin-flip. The problem of barrier penetration is represented by equation (7), where
B̂† = −σB̂σ (σ ≡ σ3 is the diagonal Pauli matrix). Thus Ĝ† = σĜ−1σ , the probability
current j ≡ − 1

2k ψ̄σψ = − 1
2 i(� ′�̄ − ��̄ ′) is conserved, so we are dealing with the two-

dimensional representation of the group G = SU(1, 1). For U(x) decreasing rapidly as
x → ±∞, one has the transfer matrix

T̂ ≡ lim
x,x0→±∞ Ĝ(x) =

(
a b̄

b ā

)
|a|2 − |b|2 = 1. (32)

The penetration probability amplitude is 1/|a|2 and the reflection probability is |b/a|2.
As soon as det B̂ = k2 −U(x) ≡ p2(x), the Abelian subgroup is H = U(1) in the region

where p2 > 0, and H = R under the barrier, where p2 < 0. The 2 × 2 matrix diagonalizing
B̂ is

V̂ =
(

cosh η sinh η

sinh η cosh η

)
exp(2η) ≡ p

k
. (33)
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Applied to the plane wave, moving in the positive direction, the group element in the
first-order adiabatic approximation g ≈ vh0v

−1 leads to the following expression for the
wavefunction:

�(x) = C

[
cosh η(x) exp

{
−η(x) + i

∫ x

x0

p(ξ) dξ

}

+ sinh η(x) exp

{
−η(x)− i

∫ x

x0

p(ξ) dξ

}]
. (34)

In the limit x → +∞ the parameter η(x) goes to zero,

lim
x→+∞�(x) = C exp

(
i
∫ x

x0

p(ξ) dξ

)
(35)

and the over-barrier reflection is absent in the first-order adiabatic approximation. Note that
within the framework of this approximation the elements of the matrix V̂ are considered to be
slowly dependent on x, and exp(−η(x)) = √

k/p(x). Thus a familiar WKBJ expression for
the wavefunction

�(x) = C1

√
k

p
exp

(
i
∫ x

x0

p(ξ) dξ

)
+ C2

√
k

p
exp

(
−i
∫ x

x0

p(ξ) dξ

)
(36)

is reconstructed. Remarkably, v belongs to a one-parameter subgroup of SU(1, 1), which
makes the calculations simpler than in the general problem of spin precession (cf section 4).
The over-barrier reflection is determined by (22), where the element v is represented by the
2 × 2 matrix V̂ , and h0 by the matrix

Ĥ0 =

 e−i

∫ x
x0
p dx 0

0 ei
∫ x
x0
p dx


. (37)

The probability of the over-barrier reflection is R = |A|2, where

A = 1

4

∫ +∞

−∞
e2i

∫ x
x0
p dx U ′(x)

k2 − U(x)
dx. (38)

The proposed method is valid when the inequality (16) is satisfied. This leads to the same
condition of applicability as in the WKBJ approximation,

|dp(x)/dx| � p2(x). (39)

Equation (38) coincides with the over-barrier reflection amplitude obtained by Bremmer
[18]. Bremmer’s approximation was to divide a smooth potential into a large number of small
layers. The momentum p(x), being different in different layers, was assumed to be constant
throughout a range of a particular layer. The ordinary WKBJ solution equation (36) was then
obtained by discarding all reflections of the incident wave at any layer’s boundary. Assuming
that only single reflections at all boundaries of the layers take place, Bremmer found the
over-barrier reflection amplitude.

An advantage of our procedure is that leading to the same result (equation (38)) as
Bremmer’s approach, our derivation does not demand any assumptions about the qualitative
character of the wave reflection. Thus our method shows that the usual condition for the validity
of the WKBJ approximation (equation (36)) is only needed in order to obtain Bremmer’s
formula.
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The reflection amplitude (38) may be compared with that given by Maitra and Heller [19].
These authors use a perturbative approach with the WKBJ states as the unperturbed basis.
According to Maitra and Heller the approximated reflection amplitude AMH is given by the
matrix element of an effective potential between the usual WKBJ wavefunctions, i.e.

AMH =
∫ +∞

−∞
Ueff (x, k)

e2i
∫ x

p(y) dy

p(x)
dx. (40)

The effective potential of Maitra and Heller is given by the formula

Ueff (x, k) = −3(p′(x))2

4p2(x)
+
p′′(x)
2p(x)

. (41)

Once Maitra and Heller use the perturbative arguments their expression for the reflection
amplitude should be valid when the effective potential is small, i.e.

|Ueff (x, k)| � k2. (42)

Comparing the above conditions with that of the applicability of our approximation we can see
that our approach has a wider range of validity since inequality (42) follows from equation (36).

In the limit of k2 � U(x) the momentum p(x) becomes approximately equal to k.
NeglectingU(x) in comparison with k2 in the integral (38), and integrating by parts, we obtain
the result which corresponds to perturbation theory:

Apert = 1

2ik

∫ +∞

−∞
e2ikxU(x) dx (43)

6. Parametric excitation of a quantum oscillator

The parametric excitation of a quantum oscillator is the excitation of the oscillator under change
of its parameters m = m(t) and B = B(t). The general case with a time-dependent m(t) and
B(t) may be easily reduced to m = constant by changing variables t ′ = ∫

dt
m(t)

, B′ = mB.
The Schrödinger equation for the wavefunction of the quantum oscillator has the following
form:

i
∂ψ

∂t
= −∂2ψ

∂x2
+

1

2
B2(t)x2ψ. (44)

For B(t) the asymptotic conditions

B(t) −→ B± t −→ ±∞ (45)

are assumed. The asymptotic stationary states are

φ±
n (x, t) = φn(x,B±) e−i(n+ 1

2 )B±t (46)

φn(x,B±) =
(

1

2nn!

√
B±
π

)1/2

exp

(
−B±x2

2

)
Hn(

√
B±x). (47)

The time dependence of the quantum oscillator parameters m(t) and B(t) allows for the
transitions between different stationary states.

A typical problem is to calculate the probability of transitionsWmn from the state ψn with
the asymptotic φ(−)n (x, t) at t → −∞ to the asymptotic state φ(+)m (x, t) at t → +∞. As is
well known (e.g. Baz’ et al [17]), in order to determine this probability of transitions Wmn it is
sufficient to calculate the quantum mechanical coefficient θ of the over-barrier reflection from



A geometrical approach to non-adiabatic transitions in quantum theory 1749

the one-dimensional potential of a particle with momentum p(x) =
√
k2 − U(x) = B(x),

whereB(x) is the frequency function of the quantum oscillator. However, the analytic solution
of the over-barrier reflection problem is known only for a number of special cases. When it
is impossible to find an analytic solution for the problem of the over-barrier reflection, our
approximated approach developed in section 5 may be applied. The approximated expression
for the quantum mechanical coefficient θ is given by the formula (38), i.e.

ϑ = 1

4

∣∣∣∣
∫ +∞

−∞
e2i

∫ t
t0
B(t) dt B′(t) dt

B(t)

∣∣∣∣
2

. (48)

When the parameter θ is determined, the probability of transitions Wmn may be calculated
using the Perelomov and Popov [16] formula:

Wmn = n<!

n>!

∣∣∣√1 − ϑP
|m−n|/2
|m+n|/2 (

√
1 − ϑ)

∣∣∣2 (49)

where n< = min(m, n), n> = max(m, n) and Pm
n (x) are the associated Legendre functions.

7. Comparison with exact solutions

7.1. Spin precession in a magnetic field

The exact solution of the spin precession problem of section 4 is known [11] for the magnetic
field

B(t) = 1

T

(
β1

cosh(t/T )
, 0, β0

)
. (50)

Here β0/T is the asymptotic precession frequency, T is the pulse duration. The applicability
condition equation (29) allows for the application of our approach, when the inequality

β1/β0 �
√
β2

1 + β2
0 (51)

is satisfied. When β0 > 1, the inequality (51) holds for all β1 and the process would be
adiabatic. Respectively, the perturbation theory can be applied for β1 � β0. As known from
the analytical solution of equation (7) given in terms of the hypergeometric function,

W+− = [sin(πβ1)/ cosh(πβ0)]
2. (52)

Calculating the integrals in (30), it is useful to change the variables as follows:

β1/β0 = tan k cos k sinh(t/T ) = sinh ξ. (53)

Taking the integral for α with τ1 = 0, we have

α(ξ) = β0ξ + β1 arctan(tan k tanh ξ) (54)

A+− = sin k
∫ ∞

0
sin[2α(ξ)]

tanh ξ dξ

(cosh2 ξ − sin2 k)1/2
. (55)

The latter integral is reduced to a real form, as the pulse is symmetrical under the time inversion,
so θ̇ is odd. The numerical calculation shows a wonderful accuracy of the approximation,
namely,

A+− ≈ sin(πβ1)

cosh(πβ0)
(56)

even for moderate values of β0, over a wide range of β1 (see figure 1).
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Figure 1. The spin-flip probability amplitude, for the magnetic field B(t) = 1
T

(
0, β1

cosh(t/T ) , β0

)
.

The exact (equation (52)) and approximated (equation (55)) amplitudes of the spin-flip as functions
of β1 under different parameters β0 are represented. β0 = 0.8, 0.6, 0.4 correspond to +, ∗, ◦, and
the exact amplitudes are given by the full curve.

7.2. Over-barrier reflection for the potential U = U0/(1 + e−γ x).

The analytic expression for the reflection amplitude is

A = sinh(πα(1 − √
1 − β))

sinh(πα(1 +
√

1 − β))
. (57)

In the above formula the parameters α = k/γ and β = U0/k
2 were introduced. Perturbation

theory may be applied when k � U0, i.e. 0 < β � 1. In that case the reflection probability is
equal to

ρ � πα2β2

4 sinh2(2πα)
. (58)

Next, we consider the situation when k2 � U(x). As follows from the inequality (39), in the
cases when

β/α � 1 − β (59)

the over-barrier probability amplitude may be calculated by our method. It is suitable to change
the variables z = eγ x and calculate the integral in the exponent of formula (38). We obtain the
following integral expression for the over-barrier reflection probability amplitude:

A = β

4

∫ +∞

0

z2iα−1
(
2
√

1 − β
√
(z + 1)((1 − β)z + 1) + 2(1 − β)z + 2 − β

)2iα
√

1−β
dz(

2
√
(z + 1)((1 − β)z + 1) + (2 − β)z + 2

)2iα
(1 + z)((1 − β)z + 1)

. (60)
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Figure 2. The reflection over the potential barrier U = U0/(1 + exp (−γ x)). The exact
(equation (57)) and approximated (equation (60)) amplitudes of the reflection as functions of
β = U0/k

2 under different parameters α = k/γ are represented. α = 1.0, 0.7, 0.3 correspond to
+, ∗, ◦, and the exact amplitudes are given by the full curve.

A comparison of the exact and approximate (see figure 2) probability amplitudes demonstrates
the very good accuracy of the approximation (38), namely

|A| � sinh πα(1 − √
1 − β)

sinh πα(1 − √
1 + β)

. (61)

8. Conclusions

In this paper we have proposed an adiabatic approach to the calculation of probabilities for
quantum transitions. In the case when the one-parameter-dependent Hamiltonian represents
a smooth curve in a Lie algebra, the original Schrödinger equation was interpreted as the
dynamical equation on the corresponding group manifold. The main result of this work is
expressed by equation (22) that determines the Lie algebra element responsible for the non-
adiabatic transitions.

The problem of over-barrier reflection in one-dimensional quantum mechanics is very
similar in our approach to the problem of a spin-flip in a variable magnetic field (the difference
lies in the fact that for the over-barrier reflection problem the introduced evolution operator is
an element of the group SU(1.1), and not of SU(2), as for the spin evolution operator).

We have tested our approach on simple problems for which approximate solutions are
known. In the case of a spin in a time-dependent magnetic field our procedure leads to a
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spin-flip amplitude equation (30). In the adiabatic limit equation (30) would coincide with the
Berry [2], Joye et al [4], Jakšić and Segert [5, 6] result for the spin-flip probability amplitude.
The application of our procedure to the over-barrier reflection gives Bremmer’s formula [18] in
the leading (second-)order approximation. It is remarkable that in order to obtain Bremmer’s
result, only the usual condition of the validity of the WKBJ approximation (equation (36)) is
needed.

Having checked for two solvable models (the spin-flip in the Rosen–Zener magnetic
field and the over-barrier reflection for the potential U = U0/(1 + e−γ x)), our adiabatic
approximation not only gives the exponentially small character of the probabilities of the non-
adiabatic processes, but completely describes the qualitative behaviour of these probabilities
as functions of the external parameters. The integrals (30) and (38) show the same behaviour
under variation of the magnetic field amplitude (the amplitude of the potential) as the exact
solutions. It is interesting to note that in spite of the same condition of applicability as the
WKBJ approximation, our approach is very successful in the calculation of the over-barrier
reflection, while the usual WKBJ approximation gives a zero answer to all orders. The reason
is that the WKBJ approximation is an asymptotic series that is unable to take the exponentially
small variables into account.
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